
Software Testing Methodologies Unit III

Page 1

UNIT –III

DOMAIN TESTING
 (1) Domains and paths:
 (i) The Model:

 Domain testing can be based on specifications and/or equivalent implementation
information.

 If domain testing is based on specifications, it is a functional test technique; if based on
implementations, it is a structural technique.

 Domain testing is applied to one input variable or to simple combinations of two variables,
based on specifications.

 The schematic representation of Domain testing is given below.

INPUT CLASSIFY DO CASE 1 OUTPUT

DO CASE 2

DO CASE 3

DO CASE n

 First the different input variables are provided to a program.
 The classifier receives all input variables and divides them into different cases.
 Every case there should be at least one path to process that specified case.
 Finally output is received from this do cases..

 (ii) A domain is a set:
 An input domain is a set. If the source language supports set definitions less testing is

needed because the compiler (compile-time and run-time) do much of it for us.

 (iii) Domains, paths and predicates:
 In domain testing, predicates are assumed to be interpreted in terms of input vector

variables.
 If domain testing is applied to structure (implementation), then predicate interpretation must

be based on control flowgraph.
 If domain testing is applied to specifications, then predicate interpretation is based on data

flowgraph.
 For every domain there is at least one path through the routine.
 There may be more than one path if the domain consists of disconnected parts.
 Unless stated otherwise, we’ll assume that domains consist of a single, connected part.
 We’ll also assume that the routine has no loops.
 Domains are defined by their boundaries. For every boundary there is at least one

predicate.
 For example in the statement, IF X > 0 THEN ALPHA ELSE BETA we know that number

greater than zero, belong to ALPHA, number smaller to zero, belong to BETA.

www.Jntufastupdates.com 1

Software Testing Methodologies Unit III

Page 2

 Review:

1. A domain is a loop free program.
2. For every domain there is at least one path through the routine.
3. The set of interpreted predicates defines the domain boundaries.

 (iv) Domain Closure:
 To understand the domain closure, consider the following figure.

 If the domain boundary point belongs to the same domain then the boundary is said to

close. If the domain boundary point belongs to some other domain then the boundary is
said to open.

 In the above figure there are three domains D1, D2, D3.
 In figure a D2’s boundaries are closed both at the minimum and maximum values. If D2 is

closed, then the adjacent domains D1 and D3 must be open.
 In figure b D2 is closed on the minimum side and open on the maximum side, meaning

that D1 is open and D3 is closed. In figure c D2 is open on both sides, which mean that the

adjacent domains D1 and D3 must be closed.

 (v) Domain Dimensionality:
 Depending on the input variables, the domains can be classified as number line domains,

planer domains or solid domains.
 That is for one input variable the value of the domain is on the number line, for two

variables the resultant is planer and for three variables the domain is solid.
 One important thing here is to note that we need not worry about the domains

dimensionality with the number of predicates. Because there might be one or more
boundary predicates.

 (vi) The Bug Assumptions:
 The bug assumption for domain testing is that processing is okay but the domain definition

is wrong.
 An incorrectly implemented domain means that boundaries are wrong, which mean that

control-flow predicates are wrong.
 The following are some of the bugs that give to domain errors.

 (a) Double-Zero Representation:

 Boundary errors for negative zero occur frequently in computers or programming
languages where positive and negative zeros are treated differently.

D1 D2 D3
MIN MAX

(a) Both side closed

D1 D2 D3
MIN MAX

(b) One side open

D1 D2 D3
MIN MAX

(c) Both side open

www.Jntufastupdates.com 2

Software Testing Methodologies Unit III

Page 3

 (b) Floating-Point Zero Check:

 A floating-point number can equal to zero only if the previous definition of that number is
set it to zero or if it is subtracted from itself, multiplied by zero.

 Floating-point zero checks should always be done about a small interval.
 (c) Contradictory Domains:

 Here at least two assumed distinct domains overlap.
 (d) Ambiguous Domains:

 These are missing domain, incomplete domain.
 (e) Over specified Domains:

 The domain can be overloaded with so many conditions.
 (f) Boundary Errors:

 This error occurs when the boundary is shifted or when the boundary is tilted or missed.
 (g) Closure Reversal

 This bug occurs when we have selected the wrong predicate such as x>=0 is written as
x<=0.

 (h) Faulty Logic:

 This bug occurs when there are incorrect manipulations, calculations or simplifications
in a domain.

 (vii) Restrictions:
 (a) General

 Domain testing has restrictions. i.e. we cannot use domain testing if they are violated.
 In testing there is no invalid test, only unproductive test.

 (b) Coincidental Correctness

 Coincidental correctness is assumed not to occur.
 Domain testing is not good for which outcome is correct for the wrong reason.
 One important point to be noted here is that, domain testing does not support Boolean

outcomes (TRUE/FALSE).
 If suppose the outputs are some discrete values, then there are some chances of

coincidental correctness.
 (c) Representative Outcome

 Domain testing is an example of partition testing.
 Partition testing divide the program’s input space into domains.
 If the selected input is shown to be correct by a test, then processing is correct, and

inputs within that domain are expected to be correct.
 Most test techniques, functional or structural fall under partition testing and therefore

make this representative outcome assumption.
 (d) Simple Domain Boundaries and Compound Predicates

 Each boundary is defined by a simple predicate rather than by a compound predicate.
 Compound predicates in which each part of the predicate specifies a different boundary

are not a problem: for example, x >= 0 .AND. x < 17, just specifies two domain
boundaries by one compound predicate.

 (e) Functional Homogeneity of Bugs

 Whatever the bug is, it will not change the functional form of the boundary predicate.
 (f) Linear Vector Space

 A linear predicate is defined by a linear inequality using only the simple relational
operators >, >=, =, <=, <>, and <.

 Example x2 + y2 > a2.
 (g) Loop-free Software

 Loops (indefinite loops) are problematic for domain testing.

www.Jntufastupdates.com 3

Software Testing Methodologies Unit III

Page 4

 If a loop is an overall control loop on transactions, say, there’s no problem.
 If the loop is definite, then domain testing may be useful for the processing within the

loop, and loop testing can be applied to the looping values.

 (2) Nice Domains:
 (i) Where Do Domains Come From?

 Domains are often created by salesmen or politicians.
 The first step in applying domain testing is to get consistent and complete domain

specifications.

(ii) Specified versus Implemented Domains:
 Implemented domains can’t be incomplete or inconsistent but specified domains can be

incomplete or inconsistent.
 Incomplete means that there are input vectors for which no path is specified and

inconsistent means that there are at least two contradictory specifications.

 (iii) Nice Domains:
 (1) General

 The representation of Nice two-dimensional domains is as follows. .

U1 U2 U3 U4 U5

V1

V2

V3

D11

D21

D31

D12

D22

D32

D13

D23

D33

D14

D24

D34

D15

D25

D35

 The U and V represent boundary sets and D represents domains.
 The boundaries have several important properties. They are linear, complete,

systematic, orthogonal, consistently closed, simply connected and convex.
 If domains have these properties, domain testing is very easy otherwise domain testing

is tough.
 (2) Linear and Nonlinear Boundaries

 Nice domain boundaries are defined by linear inequalities or equations.
 The effect on testing comes from only two points then it represents a straight line.
 If it considers three points then it represents a plane and in general it considers n + 1

points then it represents an n-dimensional hyperplane.
 Linear boundaries are more frequently used than the non-linear boundaries.
 We can linearize the non-linear boundaries by using simple transformations.

 (3) Complete Boundaries

 Complete boundaries are those boundaries which do not have any gap between them.
 Nice domain boundaries are complete boundaries because they cover from plus infinity

to minus infinity in all dimensions.
 Incomplete boundaries are those boundaries which consist of some gaps between them

and are not covered in all dimensions.
 The following figure represents some incomplete boundaries.

www.Jntufastupdates.com 4

Software Testing Methodologies Unit III

Page 5

A
B

C

D

E A

B

C

D

E
 The Boundaries A and E have gaps so they are incomplete & the boundaries B, C, D

are complete.
 The main advantage of a complete boundary is that it requires only one set of tests to

verify the boundary
 (4) Systematic Boundaries

 Systematic boundaries refer to boundary inequalities with simple mathematical
functions such as a constant.

 Consider the following relations,
 f1(X) >= k1 or f1(X) >= g(1,c)

 f2(X) >= k2 f2(X) >= g(2,c)

 fi(X) >= ki fi(X) >= g(i,c)

 Where fi is an arbitrary linear function, X is the input vector, ki and c are constants,
and g(i,c) is a decent function that yields a constant, such as k + ic.

 (5) Orthogonal Boundaries

 The U and V boundary sets in Nice two-dimensional domains figure are orthogonal; that
is, the every boundary V is perpendicular to every other boundary U.

 If two boundary sets are orthogonal, then they can be tested independently.
 If we want to tilt the above orthogonal boundary we can do it by testing its intersection

points but this can change the linear growth, O(n) into the quadratic growth O(n2).
 If we tilt the boundaries to get the following figure then we must test the intersections.

 (6) Closure Consistency

 Consistent closures are the most simple and fundamental closure.
 It gives consistent and systematic results.
 The following figure shows the boundary closures are consistent.

www.Jntufastupdates.com 5

Software Testing Methodologies Unit III

Page 6

A1 A2 A3 A4 A5

y = + bx

x = x = x = x = x =

k2y = + bx

y = + bx

k1

k3

 In the above figure, the shading lines show one boundary and thick lines show other

boundary.
 It shows Non orthogonal domain boundaries, which mean that every inequality in

domain x is not perpendicular to every inequality in domain y.
 (7) Convex

 A figure is said to be convex when for any two boundaries, with two points placed on
them are combined by using a single line then all the points on that line are within the
range of the same figure.

 Nice domains support convex property, where as dirty domains don’t.
 (8) Simply Connected

 Nice domains are usually simply connected because they are available at one place as
a whole but not dispersed in other domains..

 Simple connectivity is a weaker requirement than convexity; if a domain is convex it is
simply connected, but not vice versa.

 (iv) Ugly Domains:
 (a) General

 Some domains are born ugly. Some domains are bad specifications.
 So every simplification of ugly domains by programmers can be either good or bad.
 If the ugliness results from bad specifications and the programmer’s simplification is

harmless, then the programmer has made ugly good.
 But if the domain’s complexity is essential such simplifications gives bugs.

 (b) Nonlinear Boundaries

 Non linear boundaries are rare in ordinary programming, because there is no
information on how programmers correct such boundaries.

 So if a domain boundary is non linear, then programmers make it linear.
 (c) Ambiguities and Contradictions:.

A

Hole B

(a) Ambiguities

(c) Overlapped Domains

(d) Contradiction:
Dual Closure (b) Ambiguity:

Missing Boundary

www.Jntufastupdates.com 6

Software Testing Methodologies Unit III

Page 7

 Domain ambiguity is missing or incomplete domain boundary.
 In the above figure Domain ambiguities are holes in the A domain and missing

boundary in the B domain.
 An ambiguity for one variable can be see easy.
 An ambiguity for two variables can be difficult to spot.
 An ambiguity for three or more variables impossible to spot. Hence tools are required.
 Overlapping domains and overlapping domain closure is called contradiction.
 There are two types of contradictions are possible here.

(1) Overlapped domain specifications
(2) Overlapped closure specifications.

 In the above figure there is overlapped domain and there is dual closure contradiction.
This is actually a special kind of overlap.

 (d) Simplifying the Topology

 Connecting disconnected boundary segments and extending boundaries is called
simplifying the topology

 There are three generic cases of simplifying the topology.

(a) Making it convex

(b) Filling in the Holes

(c) Joining the Pieces
 Programmers introduce bugs and testers misdesign test cases by, smoothing out

concavities, filling in holes, joining disconnected pieces.
 (e) Rectifying Boundary Closures

 Different boundaries in different directions can obtain in consistent direction is called
rectifying boundary closures.

 That is domain boundaries which are different directions can obtain in one direction.

 (a) Consistent Direction

www.Jntufastupdates.com 7

Software Testing Methodologies Unit III

Page 8

 (b) Inclusion/Exclusion Consistency
 In the above figure the hyper plane boundary is outside that can obtain inside. This is

called inclusion / exclusion consistency.

(3) Domain Testing:
 (i) Overview:

 Domains are defined by their boundaries. So domain testing concentrates test points on
boundaries or near boundaries.

 Find what wrong with boundaries, and then define a test strategy.
 Because every boundary uses at least two different domains, test points used to check one

domain can also be used to check adjacent domains.
 Run the tests, and determine if any boundaries are faulty.
 Run enough tests to verify every boundary of every domain.

 (ii) Domain Bugs and How to Test for Them:
 (a) General:

EXTREME POINT

INTERIOR POINT

BOUNDARY POINT

EPSILON NEIGHBORHOOD
 An interior point is a point in a domain. It can be defined as a point which specifies

certain distance covered by some other points in the same domain.
 This distance is known as epsilon neighborhood.
 A boundary point is on the boundary that is a point with in a specific epsilon

neighborhood.
 An extreme point is a point that does not lie between any other two points.

ON POINTS

OFF POINTS

 An on point is a point on the boundary. An off point is outside the boundary.
 If the domain boundary is closed, an off point is a point near the boundary but in the

adjacent domain.

www.Jntufastupdates.com 8

Software Testing Methodologies Unit III

Page 9

 If the domain boundary is open, an off point is a point near the boundary but in the
same domain.

 Here we have to remember CLOSED OFF OUTSIDE, OPEN OFF INSIDE
 i.e. COOOOI
 The following figure shows a generic domain ways.

SHIFTED BOUNDARIES

TILTED BOUNDARIES

OPEN / CLOSE ERROR

EXTRA BOUNDARY

MISSING BOUNDARY

CORRECT

INCORRECT

 (b) Testing One-Dimensional Domains:

 The following figure shows one dimensional domain bugs for open boundaries.

a) An Open Domain (A)

B A

b) Closure bug

B A
X

c) Boundary shifted left

B A
X

c) Boundary shifted right

B A
X

e) Missing Boundary

B
X

f) Extra Boundary

B A
X

C
X

www.Jntufastupdates.com 9

Software Testing Methodologies Unit III

Page 10

 In the above figure a) we assume that the boundary was to open for A.
 In figure b) one test point (marked X) on the boundary detects the bug.
 In figure c) a boundary shifts to left.
 In figure d) a boundary shifts to right.
 In figure e) there is a missing boundary. In figure f) there is an extra boundary.
 The following figure shows one dimensional domain bugs for closed boundaries.

a) A closed Domain (A)

B A

b) Closure bug

B A
X

c) Boundary shifted left

B A
X

c) Boundary shifted right

B A
X

e) Missing Boundary

B
X

f) Extra Boundary

B A

X
C

X

 In the above figure a) we assume that the boundary was to close for A.
 In figure b) one test point (marked X) on the boundary detects the bug.
 In figure c) a boundary shifts to left. In figure d) a boundary shifts to right.
 In figure e) there is a missing boundary. In figure f) there is an extra boundary.
 Only one difference from this diagram to previous diagram is here we have closed

boundaries.
 (c) Testing Two-Dimensional Domains:

 The following figure shows domain boundary bugs for two dimensional domains.
 A and B are adjacent domains, and the boundary is closed with respect to A and the

boundary is opened with respect to B.
 (i) Closure Bug:

 The figure (a) shows a wrong closure, that is caused by using a wrong operator for
example, x>=k was used when x > k was intended.

 The two on points detect this bug.
 (ii) Shifted Boundary:

 In figure (b) the bug is shifted up, which converts part of domain B into A’.
 This is caused by incorrect constant in a predicate for example x + y >= 17 was used

when x + y > = 7 was intended. Similarly figure (c) shows a shift down.

www.Jntufastupdates.com 10

Software Testing Methodologies Unit III

Page 11

B

AX X

(a) Closure Bug

X X

X

A

B

A'

(b) Shifted Up

A

B'

B
X

XX

(c) Shifted Down

X X

X

A

A'

B

B'

(d) Tilted Boundary

X X

X

A

A'

B

B'

(e) Extra Boundary

X
B

A XX

(f) Missing Boundary

www.Jntufastupdates.com 11

Software Testing Methodologies Unit III

Page 12

 (iii) Tilted boundary:

 A tilted boundary occurs, when coefficients in the boundary inequality are wrong.
 For example we used 3x + 7y > 17 when 7x + 3y > 17 is needed.
 Figure (d) shows a tilted boundary which creates domain segments A’ and B’.

 (iv) Extra Boundary:

 An extra boundary is created by an extra predicate.
 Figure (e) shows an extra boundary. The extra boundary is caught by two on points.

 (v) Missing Boundary:

 A missing boundary is created by leaving out the predicate.
 A missing boundary shown in figure (f) is caught by two on points.

 The following figure summarizes domain testing for two dimensional domains.

 There are two on points (closed circles) for each segment and one off point (open circle)
 Note that the selected test points are shared with adjacent domains.
 The on points for two adjacent boundary segments can also be shared.
 The shared on points is given below.

 (d) Equality and Inequality Predicates:

 Equality predicates are defined by equality equation such as x + y =12.
 Equality predicates supports only few domain boundaries

C

A

c

B
b

d

a

c'

 Inequality predicates are defined by inequality equation such as x + y > 12 or x + y <12
 Inequality predicates supports most of the domain boundaries.
 In domain testing, equality predicate of one dimension is a line.
 Similarly equality of two dimensions is a two dimensional domain and equality of three

dimensions is a planer domain.

www.Jntufastupdates.com 12

Software Testing Methodologies Unit III

Page 13

 Inequality predicates test points are obtained by taking adjacent domains into
consideration.

 In the above figure the three domains A, B, C are planer. The domain C is a line.
 Here domain testing is done by two on points & two off points.
 That is test point b for B, and test point a for A and test points c and c’ for C.

 (e) Random Testing:

 Random testing is a form of functional testing that is useful when the time needed to
write and run directed tests are too long.

 One of the big issues of random testing is to know when a test fails.
 When doing random testing we must ensure that they cover the specification.
 The random testing is less efficient than direct testing. But we need random test

generators.
 (f) Testing n-Dimensional Domains:

 If domains defined over n-dimensional input space with p-boundary segments then the
domain testing gives testing n-dimensional domains.

 (iii) Procedure:
 Generally domain testing can be done by hand for two dimensions.
 Without tools the strategy is practically impossible for more than two variables.

1. Identify the input variables.
2. Identify variables which appear in domain predicates.
3. Interpret all domain predicates in terms of input variables.
4. For p binary predicates there are 2p domains.
5. Solve the inequalities to find all the extreme points of each domain.
6. Use the extreme points to solve for near by on points.

 (iv) Variations, Tools, Effectiveness:
 Variations can vary the number of on and off points or the extreme points.
 The basic domain testing strategy discussed here is called the N X 1 strategy, because it

uses N on points and one off point.
 In cost effectiveness of domain testing they use partition analysis, which includes domain

testing, computation verification and both structural and functional information.
 Some specification tools are used in domain testing.

 (4) Domains and Interface Testing:
 (i) General:

 The domain testing plays a very important role in integration testing. In integration testing
we can find the interfaces of different components.

 We can determine whether the components are accurate or not.

 (ii) Domains and Range:
 Domains are the input values used. Range is just opposite of domains.
 i.e. Range is output obtained.
 In most testing techniques, more forces on the input values.
 This is because with the help of input values it will be easy to identify the output.
 But interface testing gives more forces on the output values.
 An interface test consists of exploring the correctness of the following mappings.

Caller domain

Called domain

Caller range

Caller range

Called range

Called domain

www.Jntufastupdates.com 13

Software Testing Methodologies Unit III

Page 14

 (iii) Closure Compatibility:
 Assume that the caller’s range and the called domain spans the same numbers say 0 to 17
 The closure compatibility shows the four cases in which the caller’s range closure and the

called’s domain closure can agree.
 The four cases consists of domains that are closed on top (17) & bottom (0), open top &

closed bottom, closed top & open bottom and open top & bottom.
 Here the thick line represents closed and thin line represents open.

 both closed

17

0

open tops open bottoms both bottomcaller called

 The following figure shows the twelve different ways the caller and the called can disagree

about closure. Not all of them are necessarily bugs.

0

17

 Here the four cases in which a caller boundary is open and the called is closed are not

buggy.

 (iv) Span Compatibility:
 The following figure shows three possibly harmless of span incompatibilities.
 In this figure Caller span is smaller than Called.

3

7

9

1

9

1

9

1

3

9

1

7

 The range of a caller is a sub set of the called domain. That is not necessarily a bug.
 The following figure shows Called is Smaller than Caller.

www.Jntufastupdates.com 14

Software Testing Methodologies Unit III

Page 15

3

7

9

1

9

1

9

1

3

9

1

7

 (v) Interface Range/ Domain Compatibility Testing:

 The application of domain testing is also very important for interface testing because it tests
the range and domain compatibilities among caller and called routines.

 It is the responsibility of the caller to provide the valid inputs to the called routine.
 After getting the valid input, the test will be done on every input variable.

 (vi) Finding the values:
 Start with the called routine’s domains and generate test points.
 A good component test should have included all the interesting domain-testing cases.
 Those test cases are the values for which we must find the input values of the caller.

 (5) Domains and Testability:
 (i) General:

 Domain testing gives orthogonal domain boundaries, consistent closure, independent
boundaries, linear boundaries, and other characteristics. We know that which makes
domain testing difficult. That is it consists of applying algebra to the problem.

 (ii) Linearizing Transformations:
 This is used to transfer non linear boundaries to equivalent linear boundaries.
 The different methods used here are
 (i)Polynomials:

 A boundary is specified by a polynomial or multinomial in several variables.
 For a polynomial each term can be replaced by a new variable.
 i.e. x, x2, x3, …can be replaced by y1 = x, y2 = x2, y3 = x3 , …
 For multinomials you add more new variables for terms such as xy, x2y, xy2, …
 So polynomial plays an important role in linear transformations.

 (ii)Logarithmic Transforms:

 Products such as xyz can be linearized by substituting u = log (x), v = log (y), log (z).
 The original predicate xyz > 17 now becomes u + v + w > 2.83.

 (iii)More general forms:

 Apart from logarithmic transform & polynomials there are general linearizable forms
such as x / (a + b) and axb. We can also linearize by using Taylor series.

 (iii) Coordinate Transformations:
 The main purpose of coordinate transformation technique is to convert Parallel boundary

inequalities into non parallel boundary inequalities and Non-parallel boundary inequalities
into orthogonal boundary inequalities.

 (iv) A Canonical Program Form:
 Testing is clearly divided into testing the predicate and coordinate transformations.
 i.e. testing the individual case selections, testing the control flow and then testing the case

processing..

 (v) Great Insights:
 Sometimes programmers have great insights into programming problems that result in

much simpler programs than one might have expected.

www.Jntufastupdates.com 15

Software Testing Methodologies Unit III

Page 16

PATHS, PATH PRODUCTS AND REGULAR EXPRESSIONS
 (1) Path products & path expression:
 (1) Explain Paths, Path products, Path expressions, path sums and loops?

 (a) Paths:
 A sequence of statements which starts at an entry and ends at an exit and passes all the

decisions, junctions & processes is known as path.
 A path represents different links and we can give a simplest weight to a link is a name.
 Using link names, we can convert the graphical flowgraph into an equivalent algebraic

expression.
 The link name will be denoted by lower case italic letters.
 In traversing a path, we traverse link names that give the name of the path.
 If you traverse links a, b, c, d then the name for that path is abcd.
 This path name is also called a path product. The following are some examples of paths.

1 3 4 5 2
e

a

b d

c

f

The different paths are: eacf, eadf, ebcf, ebdf

a b c d e

f g h i

j k l

m

The different paths are: abcde, abgjfbcde, abcdimfbcde

1 3 2a
b

c

The different paths are: ac, abc, abbc, abbbc, abbbbc

1 3 4 2
a b

c

d

The different paths are: abd, abcbd, abcbcbd, abcbcbcbd
(b) Path Products:
 The concatenation of names of two consecutive path segments is called a path product.
 For example if X and Y are defined as X = abcde and Y = fghij then
 XY = abcdefghij YX = fghijabcde
 aX = aabcde Xa = abcdea XaX = abcdeaabcde .
 Another example is if X = abc + def + ghi and Y = uvw + z then
 XY = abcuvw + defuvw + ghiuvw + abcz + defz + ghiz
 If X = abcde then X1 = abcde
 X2 = (abcde)2 = abcdeabcde

 …
 The path product is not commutative that is XY does not necessarily equal to YX.

www.Jntufastupdates.com 16

Software Testing Methodologies Unit III

Page 17

 The path product is associative that is (XY)Z = X(YZ).

(c) Path expression:
 Path expression is defined as an expression which represents set of all possible paths

between an entry and exit nodes. For example:

f g kh

x

y

d

u
v

w

i

j
 The path expression to the above figure is: f (x + y + d) g (u + v + w + h + i + j) k

(d) Path sums:
 The path sum is the sum of all the parallel links between two nodes or sum of all parallel

paths between two nodes. Path sum is denoted by ‘+’.
 Ex (i)

1 3 4 5 2
e

a

b d

c

f

 In the above figure, links a & b are parallel, so these parallel paths are denoted by a + b.
 Similarly c and d are parallel & these parallel paths are denoted by c + d.
 The set of parallel paths between 1 and 2 nodes are eacf + eadf + ebcf + ebdf.
 Ex (ii)

f g kh

x

y

d

u

v

w

i

j
 The first set of parallel path is denoted by X + Y + d and second by u + v + w + h + i + j.
 The set of all paths in this flowgraph is f (X + Y + d) g(u + v + w + h + i + j) k
 Path sum is commutative and associative. Commutative is X + Y = Y + X
 Associative is (X+Y)+Z=X+(Y+Z)

(e) Loops:
 If a single link or path expression is traversed indefinite no of times leading to infinite no of

parallel paths then it is called a loop. For example the loop consists of a single link b, then
the set of all paths through that loop is b0 + b1 + b2 + ….bn

b0

b1

b2

b3

bn
...

 This infinite sum is denoted by b*. So b*= b0 + b1 + b2 + ….bn.
 If the loop is taken at least once then it is denoted by b+.

www.Jntufastupdates.com 17

Software Testing Methodologies Unit III

Page 18

 Ex (i)

1 3 2a
b

c

 The path expression is: ab*c = a(b0)c + a(b1)c + a(b2)c + a(b3)c+…….
 = ac + abc + a bbc + a bbbc + ……
 Ex (ii)

1 3 4 2
a b

c

d
 The path expression is: a(bc)*bd = a(bc)bd + a(bc)bd + a(bc)bd + …….
 =abd + abcbd + abcbcbd + …

 (2) Discuss all the rules in path representation of graphs?
Rule 1:

A(BC)=(AB)C=ABC

Rule 2:

X + Y = Y + X
Rule 3:

 (X + Y) + Z = X + (Y + Z) = X + Y + Z
 A(BC)=(AB)C=ABC
Rule 4:
 Distributive laws are A(B+C) = AB + AC
 (B + C) D = BD + CD.
 For example:

 e(a+b)(c+d)f = e(ac+ad+bc+bd)f = eacf + eadf + ebcf + ebdf
Rule 5:
 The absorption rule is, if X and Y denote the same set paths, then the union of these sets is

not changed. Ex: X + X = X.
 Another example is: if X = a + aa + abc + abcd + def then
 X + a = X + aa = X + abc = X + abcd = X + def = X
Rule 6:

 Xn + Xm = Xn if n is bigger than m
 = Xm if m is bigger than n

Rule 7:
 XnXm = Xn+m

Rule 8:
 XnX* = X*Xn = X*

Rule 9:
 XnX+ = X+Xn = X+

Rule 10:
 X*X+ = X+X* = X+

Identity elements:(Rule 11 to Rule 17)

 a0, X0 denote the path whose length is zero. The rules are
Rule 11:

 1 + 1 = 1

1 3 4 5 2e

a

b d

c

f

www.Jntufastupdates.com 18

Software Testing Methodologies Unit III

Page 19

Rule 12:
 1X = X1 = X

Rule 13:
 1n = 1n = 1* = 1+ = 1

Rule 14:
 1+ + 1 = 1* = 1

Rule 15:
 X + 0 = 0 + X = X

Rule 16:
 X0 = 0X = 0

Rule 17:
 0* = 1 + 01 + 02 + . . . = 1

 (2) A Reduction Procedure:
 (1) Write the steps involved in Node Reduction Procedure. Illustrate all the steps with

 the help of neat labeled diagrams?
 Node Reduction Procedure:

 The main aim of Node Reduction Procedure is to remove all the intermediate nodes
between entry and exit nodes. This procedure is helpful in debugging process. i.e. Instead
of gathering information about path expression of all the intermediate nodes for debugging;
it is easy to debug only the path expression between entry and exit nodes.

 Procedure:

1. Combine all serial links by multiplying their path expressions.
2. Combine all parallel links by adding their path expressions.
3. Remove all self loops by replacing them with a link of the form x*, where x is the path

expression of the link in that loop.
4. Choose the node which is to be removed other than initial and final node. The path

expression of the inlink and outlink of this node is multiplied and a direct link is applied with
the product of path expression. This step-4 is called Cross-Term Step.

5. Combine any remaining serial links by multiplying their path expressions.
6. Combine all parallel links by adding their path expressions. This Step-6 is called Parallel

Term Step.
7. Remove all self-loops as in step 3. This Step-7 is called Loop Term Step.
8. If the graph consists of a single link between the entry and the exit node, then the path

expression for that link is a required path expression. Otherwise return to step 4.
 Example:

 Consider the following graph.

1 3 4 5 2

6 7 8

a b c d

e f g h

i j

 First remove node 8 by applying step 4 (cross-term step) and combine by step 5.

1 3 4 5 2

6 7 8

a b c d

e f
gj

i

gh

www.Jntufastupdates.com 19

Software Testing Methodologies Unit III

Page 20

 Remove node 7 by applying step 4 (cross-term step) and combine by step 5.

1 3 4 5 2

6 7

a b c d

e
gjf gh

gji

 Remove node 6 by applying step 4 (cross-term step) and combine by step 5.

1 3 4 5 2

6

a b c d

gjf gh

gjie

 Add parallel links between node 5 and node 2 by applying parallel term step.

1 3 4 5 2
a b c d + gh

gjf
gjie

 Remove node 5 by applying step 4 (cross-term step) and combine by step 5.

cgjf

1 3 4 2
a b c(d + gh)

cgjie
 Remove self loop at node 4 by applying loop term step.

1 3 4 2
a b [cgjf]*c(d + gh)

[cgjf]*cgjie
 Remove node 4by applying step 4 (cross-term step) and combine by step 5.

1 3 2
a

b[cgjf]*cgjie

b[cgjf]*c(d + gh)

 Remove self loop at node 3 by applying loop term step.

1 3 2
a [b[cgjf]*cgjie]*b[cgjf]*c(d + gh)

 Remove node 3 by applying step 4.

1 2
a([b[cgjf]*cgjie]*b[cgjf]*c(d + gh))

 (3) Applications:

 (1) How many paths in a Flowgraph:

 Q. Explain maximum path count arithmetic of a flowgraph with an example?
Maximum Path Count Arithmetic:

 Here each link is represented by a link weight. There are three arithmetic cases that are
considered here.

 They are

www.Jntufastupdates.com 20

Software Testing Methodologies Unit III

Page 21

 (i) Parallel rule:
 Each term of the path expression A is added with each term of the path expression B if

there are two path expressions A and B. So it is A+B. If there are WA paths in A and WB
paths in B then there are WA + WB paths in its combination.

 (ii) Series rule:

 Each term of the path expression A is multiplied with each term of the path expression B
if there are two path expressions A and B. So it is AB. If there are WA paths in A and WB
paths in B then there are WA WB paths in its combination.

 (iii) Loop rule:

 Loop rule is evaluated by considering number of times that the path is iterated.

Example:

 Determine the path expression to the following figure.

a

b

c

d e f

i

g h

jl

m

k

 The path expression is given by
 a(b +c) d [e(fi)*fgj(m + l)k]*e(fi)*fgh
 Let each link represents a single link and is given by a link weight 1.
 Assume that the outer loop will be taken exactly four times and the inner loop can be taken

zero to three times.
 The reduction is as follows.

1

1

1

1 1 1

1

1 1

11

1

1
{0-3}

{4-4}

 Now apply parallel rule.

1 1+1=2 1 1 1

1

1 1

1

1+1=2

1
{0-3}

{4-4}

 Now apply series rule.

CASE PATH

EXPRESSION

WEIGHT

EXPRESSION

PARALLEL A + B WA + WB

SERIES AB WAWB

LOOP An n

 ∑ WA
i

i=0

www.Jntufastupdates.com 21

Software Testing Methodologies Unit III

Page 22

1x2x1=2 1 1

1

1 1

1x2x1=2

{0-3}
{4-4}

 Now create inner self loop & Apply loop rule for removing inner self loop.

 Now apply series rule.

 Now create outer self loop.

 Apply loop rule to remove the self loop.

 Apply series rule.

 Alternatively we can calculate the maximum number of paths as follows.
 The path expression is given by
 a(b +c) d [e(fi)*fgj(m + l)k]*e(fi)*fgh
 In the above expression each link is substituted by 1.
 1(1+1)1[1(1x1)3 1x1x1 (1+1)1]4 1(1x1)3 1x1x1
 =1(2)[13 x 2]4 1x13

 =2[4x2]4 x 4 [since 13 = 10 +11 + 12 + 13 =4]
 =2 x [8]4 x 4 = 32,768..

 (2) Approximate Minimum number of paths:

 Q. Define structured code. Explain about lower path count arithmetic?
Structured code:

 A structured flowgraph is one that can be reduced to a single link by successive application
of transformations.

 Based on the path expression obtained by node-by-node reduction procedure we can
determine whether the given flow graph is a structured or unstructured.

 That is if the resultant expression is large and ugly then the graph is unstructured one
otherwise the graph is structured one.

Lower path count arithmetic:
 The lowest number of paths in a structured flowgraph can be approximately known; it may

or may not be accurate because there is every possibility of a path being unachievable
which further lowers the number count.

 Here each link is represented by a link weight. Loops are always problematic.

2 1x4x1=4 1

2

{4-4}

2 4x1=4

2(4)=8

{4-4}

2 84 4

2 x x 484 32768

2 1 1x1=1 1

2
{4-4}

10+11+12+13=42 1 1 1

2
{4-4}1(1)=1

{0-3}

www.Jntufastupdates.com 22

Software Testing Methodologies Unit III

Page 23

 So it must be traversed only one time or zero times to achieve the coverage. There are
three arithmetic cases here. They are.

 (i) Parallel rule:
 Each term of the path expression A is added with each term of the path expression B if

there are two path expressions A and B. So it is A+B. If there are WA paths in A and WB
paths in B then there are WA + WB paths in its combination.

 (ii) Series rule:

 Each term of the path expression A is multiplied with each term of the path expression B
if there are two path expressions A and B. So it is AB.

 If there are WA paths in A and WB paths in B then there are MAX (WA, WB) paths in its
combination.

 (iii) Loop rule:

 Loop rule is taken either by considering only one time that the path is iterated or zero
times the path is iterated. So it gives the value 1 or its link weight.

CASE PATH

EXPRESSION

WEIGHT

EXPRESSION

PARALLEL A + B WA + WB

SERIES AB MAX(WA,WB)

LOOP An 1,W1

Example:

 Determine the path expression to the following figure.

a

b

c

d e f

i

g h

jl

m

k

 The path expression is given by a(b +c) d [e(fi)*fgj(m + l)k]*e(fi)*fgh
 Let each link represents by a link weight 1. Assume that the outer loop will be taken exactly

four times and the inner loop can be taken zero to three times. The reduction is as follows.

1

1

1

1 1 1

1

1 1

11

1

1
{0-3}

{4-4}

 Now apply parallel rule.

 Now apply series rule.

2 1 1

1

1 1

2

{0-3}
{4-4}

1 2 1 1 1

1

1 1

1
2

1
{0-3} {4-4}

www.Jntufastupdates.com 23

Software Testing Methodologies Unit III

Page 24

 Now create inner self loop & apply loop rule for removing inner self loop.

 Now apply series rule.

 Now create outer self loop.

 Apply loop rule to remove self loop.

 Apply series rule.

 Alternatively we can calculate the minimum number of paths as follows.
 The path expression is given bya(b +c) d [e(fi)*fgj(m + l)k]*e(fi)*fgh
 In the above expression each link is substituted by 1.
 1(1+1)1[1(1x1)0 1x1x1 (1+1)1]0 1(1x1)0 1x1x1
 =1(2)[10 x 2]0 1x10 =2x1 = 2

 (3) The probability of getting there:

 Q. What is the probability of path expressions? Write arithmetic rules. Explain with an

 example.

 Probability of path expressions:
 Specify each out link of a node equal to the probability of that link. The sum of the out link

probabilities is equal to 1. For a simple loop, if the loop is taken N times then the looping
probability is N/(N+1) and non looping probability is 1/(N+1).

 There are three arithmetic cases here. They are
 Parallel rule:

 Each term of the path expression A is added with each term of the path expression B if
there are two path expressions A and B. So it is A+B.

 If there is a path expression A with Probability PA and path expression B with Probability
PB then the resultant probability is PA + PB.

 Series rule:

 Each term of the path expression A is multiplied with each term of the path expression B
if there are two path expressions A and B. So it is AB. If there is a path expression A
with Probability PA and path expression B with Probability PB then the resultant
probability is PA PB

 Loop rule:

 If the probability of looping node is PL and the probability of link leaving the loop node is
PA then PA + PL=1. So PA = 1- PL

2 1 1

2 {4-4}

2

2(1)=2

{4-4}
1

2 12

2

2 1 1 1

2
{4-4}

12 1 1 1

2
{4-4}1(1)=1

{0-3}

www.Jntufastupdates.com 24

Software Testing Methodologies Unit III

Page 25

CASE PATH

EXPRESSION

WEIGHT

EXPRESSION

PARALLEL A + B PA + PB

SERIES AB PAPB

LOOP An PA/(1-PL)

Example (i)

PL

PA
 PA = 1 - PL

New Probability PNEW = PA / (1-PL) = (1-PL) / (1-PL) = 1

 Example (ii)

 Here PL + PA + PB + PC =1
 1 - PL = PA + PB + PC
 PA / (1 - PL) + PB / (1 - PL) + PC / (1 - PL) = (PA + PB + PC) / (1 - PL)
 = (PA + PB + PC) / (PA + PB + PC) = 1

Example:

 Consider the following flowgraph.

A

B

C

.01
.1

.8

.2

.2

.3

.99

.05 .5

.85
.9

.6
.4

.1

.2

.8

 Calculate the probabilities of cases A, B, C.

PL

PA

PB

PC

PA

PL1-

PL1-

PL1-

PB

PC

www.Jntufastupdates.com 25

Software Testing Methodologies Unit III

Page 26

First consider case A:

A

.01
.1

.8

.2

.2

.3

.99

.05
 In the above flowgraph if the link weight is not specified then it is specified by 1 and also

represents its nodes as follows.

A

.01
.1

.8

.2

.2

.3

.99

.05
1 3

4 5

8

9

6 7 2

1

1 1 1

 The above flowgraph is also taken by

A

.01

.1

.8

.2

.2

.3
.99

.05

1 3 4 5

8 9

6 7 21
1 1 1

 Remove self loop by applying loop rule

A
.1

.8

.2

.2

.3
1

.05

1 3 4 5

8 9

6 7 21
1 1 1

 Remove node 9 by applying series rule

A
.1

.8

.2

.2
.3

.05

1 3 4 5

8

6 7 21
1 1 1

 Remove node 8 by applying series rule

A.1

.8

.2

.015
.01

1 3 4 5 6 7 21 1 1 1

 Remove node 5 by applying series rule

www.Jntufastupdates.com 26

Software Testing Methodologies Unit III

Page 27

A.1

.8

.2

.015

.01

1 3 4 6 7 21 1 1

 Add parallel links between node 3 and node 6 by applying parallel rule

A.1

.8

.2

.025

1 3 4 6 7 21 1 1

 Remove node 7 by applying series rule

A.1

.8

.2

.025

1 3 4 6 21 1

 Remove node 4 by applying series rule

A
.1

.8

.2

.025

1 3 6 21

 Add parallel links between node 3 and node 6 by applying parallel rule

A
.125

.8

.2
1 3 6 21

 Remove self loop at node 6 by applying loop rule

A
.125 .1

1 3 6 21

 Remove node 3 and node 6 by applying loop rule

A
.125

1 2
Consider case B:

B
.05 .5

.85
.9

.6
.4

.2

 In the above flowgraph if the link weight is not specified then it is specified by 1 and also

represents its nodes as follows.

B
.05 .5

.85
.9

.6 .4

.2
1 3 4 5 6 7

8 9

1 1
21

 Remove node 9 by applying series rule.

B
.05 .5

.85 .54 .36

.2
1 3 4 5 6 7

8

1 1
21

 Remove node 8 by applying series rule.

www.Jntufastupdates.com 27

Software Testing Methodologies Unit III

Page 28

B
.05 .5

.459

.2
1 3 4 5 6 7

1 1
21

.306

 Remove node 4 and node 7 by applying series rule.

B
.025

.459

.2
1 3 5 6

1 1
2

.306

 Add parallel links between node 3 and node 5 by applying parallel rule

B
.484 .2

1 3 5 6
1 1

2

.306
 Remove node 5 by applying series rule.

B
.484 .2

1 3 6
1

2

.306
 Add parallel links between node 3 and node 5 by applying parallel rule

B
.79 .2

1 3 6
1

2

 Remove node 5 by applying series rule.

B

.158
1 2

Consider case C.

C

.05 .5

.85
.9

.6
.4

.1

.8

 In the above flowgraph if the link weight is not specified then it is specified by 1 and also

represents its nodes as follows.

C

.05 .5

.85
.9

.6
.4

.1

.8

31 4 5 6 7

210

98

1 1 1

1

 Remove node 9 by applying series rule.

C

.05 .5

.85 .54 .36

.1

.8

31 4 5 6 7

210

8

1 1 1

1

 Remove node 10 by applying series rule.

www.Jntufastupdates.com 28

Software Testing Methodologies Unit III

Page 29

C

.05 .5

.85 .54 .36

.1

.8

31 4 5 6 7

2

8

1 1 1

 Remove node 8 by applying series rule.

C
.05 .5

.085

.459

.831 4 5 6 7 2
1 1 1

.306

 Remove node 7 & node 4 by applying series rule.

C
.025

.085

.459

.831 5 6 2
1 1

.306

 Add parallel links between node 3 and node 5 by applying parallel rule

C
.484

.085

.831 5 6 2
1 1

.306

 Remove node 5 by applying series rule

C
.484

.085

.831 6 2
1

.306

 Add parallel links between node 3 and node 6 by applying parallel rule

C
.79

.085

.831 6 2
1

 Remove node 6 by applying series rule

C

.085

.632
31 2

1

 Add parallel links between node 3 and node 2 by applying parallel rule

C
.717

31 2
1

 Remove node 3 by applying series rule

C
.717

1 2
Cross check:

 Sum of case A + case B + case C = .125 + .158 + .717 =1.
 (4) The mean processing time of a routine

 Q. What is the mean processing time of a routine? Write arithmetic rules. Explain with

 an example.
Mean processing time of a routine:

 Here every link has two weights.

www.Jntufastupdates.com 29

Software Testing Methodologies Unit III

Page 30

 One is the processing time for that link denoted by T, & other one is the probability of that
link denoted by P.

 There are three arithmetic cases here.
 They are
 Parallel rule:

 It is the arithmetic mean of all processing time over all parallel links.
 Series rule:

 It is the sum of two processing times.
 Loop rule:

 It is evaluated by considering number of times the path is iterated

CASE PATH

EXPRESSION

WEIGHT EXPRESSION

PARALLEL A + B

TA+B = (PATA+PBTB)/(PA+PB)

PA+B = PA + PB

SERIES AB

TAB =TA + TB

PAB = PA PB

LOOP

A*

TA = (TL PL)/(1-PL) + TA

PA = PA/(1-PL)

Example:

 The following figure is represented by, loop probabilities, and processing time for each link.
The probabilities are given in parentheses.

10

(.3) 25

(.7) 40

16 10 8

12

5 7

15
300

20 (.95)

14

(.3)

(.7)(.4)

(.6)

(.05)

 Apply parallel rule.

10 16 10 8

12

5 7

1514

(.3)

(.7)(.4)

(.6)
35.5

34

 .Apply series rule.

61.5 10 8

12

5 7

(.3)

(.7)(.4)

(.6)

63

 Now create inner self loop.

61.5 10

20

13 7

(.3)

(.7)(.4)

(.6)

63

 Remove the inner self loop by applying loop rule.

www.Jntufastupdates.com 30

Software Testing Methodologies Unit III

Page 31

61.5 10 30 13 7

(.3)

(.7)

63

 Apply series rule.

61.5 53 7
(.3)

(.7)

63

 Create the outer self loop.

61.5 60

(.3)

(.7)

116

 Remove the outer self loop by applying loop rule.

61.5 49.714 60
 Apply series rule

171.214

.
 (5) Push/Pop, Get/Return

 Q. What is Push/Pop, Get/Return? Write arithmetic rules. Explain with an example.
Push/Pop:

 Here PUSH operation is used to insert elements into the stack. POP operation is used to
remove elements from the stack.

 Apart from PUSH/POP other operations are GET/RETURN, OPEN/CLOSE and
START/STOP.

 There are three arithmetic cases here.
 They are

Parallel rule:

 Each term of the path expression A is added with each term of the path expression B if
there are two path expressions A and B. So it is A+B. If there are WA paths in A and WB
paths in B then there are WA + WB paths in its combination.

Series rule:

 Each term of the path expression A is multiplied with each term of the path expression B
if there are two path expressions A and B. So it is AB. If there are WA paths in A and WB
paths in B then there are WA WB paths in its combination.

Loop rule:

 It is evaluated by considering number of times the path is iterated.

 PUSH/POP operations satisfy commutative, associative, and distributive law of addition
and multiplication.

 The arithmetic tables for PUSH/POP are given by

CASE PATH

EXPRESSION

WEIGHT

EXPRESSION

PARALLEL A + B WA + WB

SERIES AB WA WB

LOOP A* W*
A

www.Jntufastupdates.com 31

Software Testing Methodologies Unit III

Page 32

 These tables are used to determine the weight of addition and multiplication operation.
 Here H represents the PUSH operation, P represents the POP operation and 1 represents

NO operation.
Example:

 Consider the following flowgraph.

 Path expression for the above flowgraph is.

 P(P+1)1[P(HH)n1 HP1(P+H)1]n2 P(HH)n1HPH

 Simplifying by using the arithmetic tables

 PUSH/POP = (P2 + P)[P(HH)n1(P+H)]n2(HH)n1

 = (P2+P)[H2n1(P2+1)]n2H2n1

 Let us consider M1,M2 represents the two looping terms. i.e. M1 represents the number of
times the inner loop is considered, M2 represents the number of times the outer loop is
considered.

CASE (i)
 Consider M1=0, M2 =0 (i.e. n1=0, n2=0)
 PUSH/POP= (P+P2)[H0(P2+1)]0H0 = P + P2

CASE (ii)
 Consider M1=0, M2 =1 (i.e. n1=0, n2=1)
 PUSH/POP= (P+P2)[H0(P2+1)]1H0

 = (P + P2)[1+P2] = P + P2 + P3 + P4
 For different combination of M1, M2 values the following table is obtained.

Get/Return:

 The arithmetic tables for GET/RETURN are.

M1 0 0 0 0 1 1 1 1 2 2 2 2

M2 0 1 2 3 0 1 2 3 0 1 2 3

PUSH

/POP

P + P2 P + P2 +

P3 + P4

6

∑ Pi

1

8

∑ Pi

1

1+H

3

∑ Hi

0

 5

 ∑ Hi

 0

 7

 ∑ Hi

 0

H2+H3

 7

 ∑ Hi

 4

 11

 ∑ Hi

 6

 16

 ∑ Hi

 8

1H P

H

P

1

P

2
H

2P

H

H P

1

1

1

PUSH/POP MULTIPLICATION TABLE

1H P

H

P

1

P+1

H

P

H+1

H+1 P+1

P+H

P+H

1

PUSH/POP ADDITION TABLE

X +

P

P

1

1 P H

H

P H

1
H

P

1

(n2)(n1)

www.Jntufastupdates.com 32

Software Testing Methodologies Unit III

Page 33

 The arithmetic table for GET/RETURN is same as that of PUSH/POP.
Example:

 Consider the following flowgraph.

 Path expression for the above flowgraph is. G(G+R) G(GR)* GGR* R
 Simplifying by using the arithmetic tables
 GET/RETURN = G(G+R)G3 R*R
 = (G+R) G3 R* = (G4 + G3R) R* = (G4 + G2GR)R* = (G4 + G2)R*

 (6) Limitations and Solutions

 Q. What are the limitations and solutions of the applications?
 The main limitation to these applications is the problem of unachievable paths.
 The node-by-node reduction procedure and most graph-theory based algorithms work well

when all paths are achievable, but may provide misleading results when some paths are
unachievable.

 The solution to handling unachievable paths is to partition the graph into subgraphs so that
all paths in each of the subgraphs are achievable. But the resulting sub graphs may
overlap, because one path may be common to several different subgraphs.

 Each predicate’s truth value splits the graph into two subgraphs.
 For n predicates there may be 2n sub graphs. Here there is an algorithm for one predicate.

1. Set the value of the predicate to TRUE and strike out all FALSE links for that predicate.
2. Discard any node, other than an entry or exit node, that has no incoming links. Discard
all links that leave such nodes. If there is no exit node, the routine has a bug because there
is a predicate value that forces an endless loop or the equivalent.
3. Repeat step 2 until there are no more links or nodes to discard. The resulting graph is
the subgraph corresponding to a TRUE predicate value.
4. Change “TRUE” to “FALSE” in the above steps and repeat. The resulting graph is the
subgraph that corresponds to a FALSE predicate value.

 Only correlated predicates should be included in this analysis not all predicates that may
control the program flow.

 (4) Regular expressions and flow anomaly detection:

 Q. Explain about Regular expression and Flow-Anomaly detection?

(i) The Problem:

 The generic flow-anomaly detection problem is used to search for a specific sequence of
operations considering all possible paths through a routine.

 Let’s say the operations are SET and RESET, denoted by s and r respectively, and we
want to know if there is a SET followed immediately by a SET or a RESET followed
immediately by a RESET (i.e, an ss or an rr sequence).

1G R

G

R

1

R

2
G

2R

G

G R

1

1

1

GET/RETURN MULTIPLICATION TABLE

1G R

G

R

1

R+1

G

R

G+1

G+1 R+1

G+R

G+R

1

GET/RETURN ADDITION TABLE

X +

G

G

R
G G R

R

G

R

www.Jntufastupdates.com 33

Software Testing Methodologies Unit III

Page 34

 Flow anomaly detection is used to know if particular sequence occurred, but not to know
the total impact of the procedure.

 It is used to detect the bug sequence in the following situations.
1. A file can be opened (o), closed (c), read (r), or written (w). If the file is read or written to
after it is closed, then it is anomalous. i.e. cr and cw are anomalous. Similarly, if the file is
read before it’s been written, just after opening, we may have a bug. Therefore, or is also
anomalous.
2. The operations performed by tape transport device are read(r), write(w), rewind (d),
forward (f), skip (k) and stop (p). In a tape-transport device rewind and forward operations
cannot be performed one after the other without performing stop operation. So the following
sequences are anomalous: df, dr, dw, fd, and fr.
3. With the help of generic flow anomaly detection, it is possible to detect the data flow
bugs sequence such as dd, dk, kk, and ku.
4. A bug that occur only if two operations a and b occurred in the order aba or bab.

(ii) Huang Theorem:

 Annotate each link in the graph with the appropriate operator or the null operator 1.
 Simplify things using a + a = a and 12 = 1.
 The regular expression obtained should be simplified carefully, as null operations cannot be

combined with other operations.
 For example, 1a may not be the same thing as a alone. Huang theorem is used to simplify

the regular expression and to examine the specific operation sequence.
 Let A, B, C, be nonempty sets of character sequences whose smallest string is at least

one character long. Let T be a two-character string of characters.
 Then if T is a substring of ABnC, then T will appear in AB2C.
 As an example, let A = pp B = srr C = rp T = ss
 The theorem states that if ss is a substring of pp(srr)nrp then ss will appear in pp(srr)2rp.
 Similarly let A = p + pp + ps B = psr + ps(r + ps) C = rp T = P4
 If p4 is a substring of ABnC then p4 will appear in AB2C (p + pp + ps)[psr + ps(r + ps)]2rp

 Huang theorem is also useful in test design.
 Further Huang shows that if you substitute 1 + X2 for every expression of the form X*, the

paths that result from this substitution are sufficient to determine whether a given two-
character sequence exists or not.

 Two character string sequences are used to represent data flow anomaly. Then using
Huang’s theorem these anomalous can be detected if these loop is iterated twice.

Data Flow Testing Example:
 By assigning appropriate operators on each link the following flowgraph can be used to

detect different anomalies bugs.

d 1 r u r ru

r dr d

 Huang’s theorem states that the following expression is sufficient to detect any two

character sequence. d(r + 1)r[1 + (udr)2]ur(1 + d2)ru
 This makes the dd bug obvious. A kk bug cannot occur and also a dk bug cannot occur.

(drr + dr)(1 + udrudr)(urru + urd2ru)
 A better way to the above is subscript the operator with the link name.

 The regular expression is da(rb + 1c)rd(uedfrf)*uergdh*riui

da

rb

1c

rd rg riui

dh

ue

dfrf

www.Jntufastupdates.com 34

Software Testing Methodologies Unit III

Page 35

 Applying Huang’s theorem:
da(rb + 1c)rd(1 + (uedfrf)2)uerg(1 + d2

h)riui
(darbrd + dacrd)(uerg + uedfrfuedfrfuerg)(riuid2

hriui)
(iii) Generalizations, Limitations and comments:

 Huang’s theorem can be easily generalized to cover sequences of greater length than two
characters. If A, B, and C are nonempty sets of strings of one or more characters, and if T
is a string of k characters, and if T is a substring of ABnC, where n is greater than or equal
to k, then T is a substring of ABkC.

 A sufficient test for strings of length k can be obtained by substituting Pk for every
appearance of P*

Pk = 1 + P + P2 + P3 + . . . + Pk
 In order to find the starting and ending sequence of strings in a path expression, the

mathematical approaches such as application of derivations to algebraic expression makes
it easier and time consuming than the path tracing process on a flowgraph.

 Static flow analysis methods can’t determine whether a path is achievable or is not
achievable.

 If unachievable paths exist, then the exactness and applicability of all flow analysis
methods reduces gradually. Hence achievable paths are preferred in order to overcome the
problems of unachievable paths.

www.Jntufastupdates.com 35

